Pattern-based algorithms for Explainable AI

Eliana Pastor 33th cycle

Doctoral Examination Committee

Francesco Bonchi, Referee, *ISI Foundation* Paolo Merialdo, Referee, *Universitá Roma Tre* Sihem Amer-Yahia, *CNRS, University of Grenoble Alpes* Luca de Alfaro, *University of California, Santa Cruz* Paolo Garza, *Politecnico di Torino*

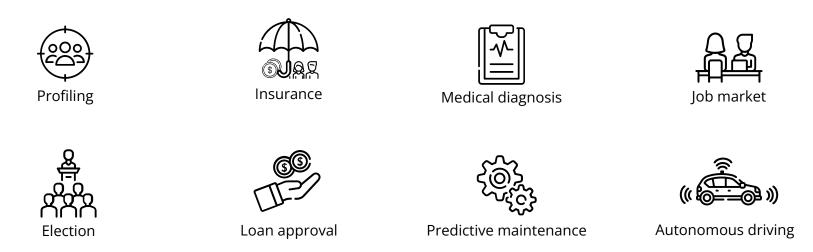
Politecnico di Torino, October 22, 2021

OVERVIEW

- On the need of explainable AI
- Related work and positioning
- Understanding the behavior of models
 - From the **individual** perspective
 Local explanation to explain individual predictions
 - From the **subgroup** perspective Identifying and characterizing peculiar model behavior in subgroups
- Conclusions and future work

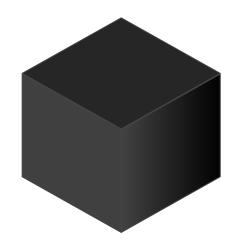
On the need of explainable Al

Impactful applications



Domain experts need to **understand** model results and **analyze** and **validate** them

On the need of explainable AI

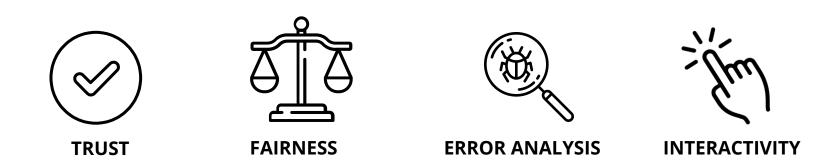


Most high-performance models lack **interpretability**

"The ability to explain or to present in understandable terms to a human"

Finale Doshi-Velez and Been Kim. "Towards A Rigorous Science of Interpretable Machine Learning"

On the need of explainable AI - Desiderata



& DEBUGGING

Enhancing the interpretability

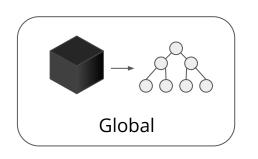
Post-hoc explainability

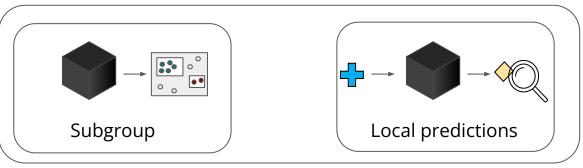
Enhancing the interpretability of black box models

Model agnostic

Applicable to any classifier

Explainability scope





How the model globally works

Concerned on the ability to fully mirror the original model Transparent surrogate \rightarrow potentially still too complex and large Characterization of the model behavior in data subgroups

Explaining the reasons behind individual predictions

THESIS CONTRIBUTION

Address the lack of transparency of classification models for structured data

Post-hoc model-agnostic explanation approaches

Pattern

Conjunction of attribute value pairs (e.g. *sex=Female, age<30*)

- Intrinsically interpretable
- Captures associations
- Interpretable data grouping

THESIS CONTRIBUTION

Individual predictions

 $\mathsf{LACE} \to \mathsf{explain}$ the reasons behind individual predictions

- Local rules, captured via patterns \rightarrow qualitative understanding
- Prediction difference \rightarrow quantitative relevance measure

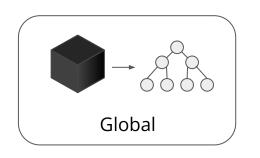
 $X\text{-}\mathsf{PLAIN} \to \mathsf{interactive}$ tool, addresses desiderata of XAI

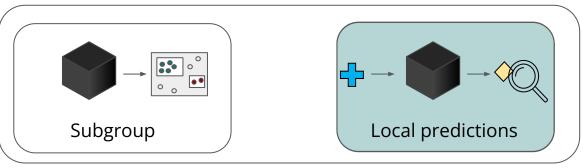
Subgroup explanations

 $DivExplorer \rightarrow characterize peculiar model behavior in data subgroups$

- Notion of divergence
- Subgroups identified by patterns
- Local contribution via Shapley Value
- Global contribution via generalization of Shapley Value Interactive framework to explore subgroup divergence

Explainability scope





How the model globally works

Characterization of the model behavior in data subgroups

Explaining the reasons behind individual predictions

Concerned on the ability to fully mirror the original model

Prediction explanation

d attributes in the interpretable feature space

Rule-based ○, ○→◇

 $\{A_i {=} v_i, A_j {=} v_j\} \rightarrow class$

Anchor¹

- Anchor rule \rightarrow anchor the prediction

Local models

 Local decision rules as LORE² → Decision tree learned in the locality generated via a genetic model

Qualitative explanation

No relative attribute importance

Visualization-based Example-based/Conterfactuals

w₁, w₂.., w_d

Local models

 Linear as LIME³. Locality of the prediction → perturbation-generated samples

Removal-based explanations

Prediction change when part of the input is omitted

- One attribute at a time
- Multiple attributes
 - exponential time complexity⁴
 - approximations (e.g. via local surrogates as KernelSHAP⁵, TreeSHAP⁶ or via sampling⁷)

Results are aggregated e.g. via Shapley Value (as in IME⁷, SHAP^{5,6})

Quantitative explanation

Info of attribute interaction is lost

[3] Ribeiro et al. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. KDD 2016. [4] Strumbelj et al. Explaining instance classifications with interactions of subsets of feature values. DAKE 2009. [5] Lundberg and Lee. A Unified Approach to Interpreting Model Predictions, NIPS 2017. [6] Lundberg et al. From local explanations to global understanding with explainable AI for trees. Nature machine intelligence 2020 [7] Strumbelj and Kononenko. An efficient explanation of individual classifications using game theory. JMLR 2010.

Local Agnostic attribute Contribution Explanation \rightarrow Prediction explanation

Qualitative explanation $^{\bigcirc,\bigcirc\rightarrow\diamondsuit}$

Quantitative explanation

_

Local model

- Associative classifier \rightarrow local rules

Locality

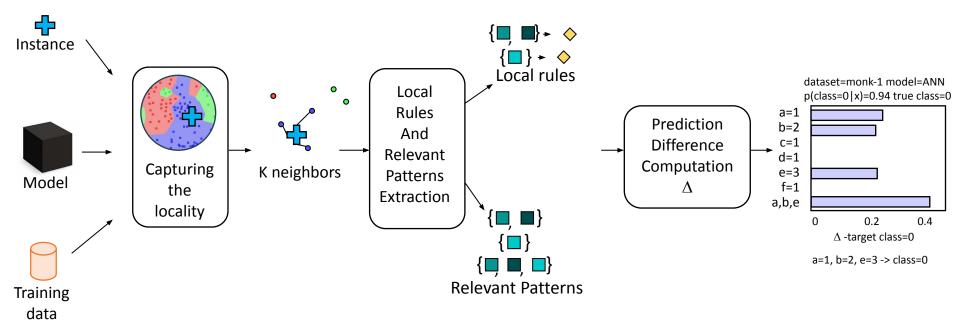
- Captured by the actual **neighborhood** (instead of generated ones)

Removal based approach

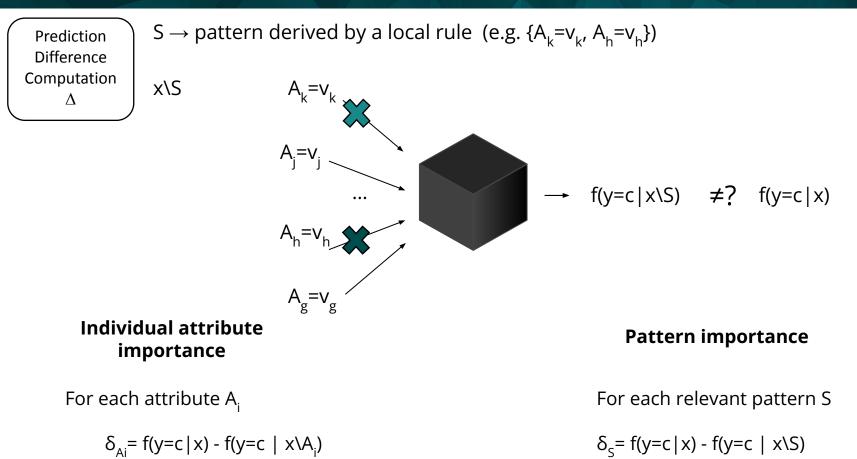
Relevance of

- Individual feature
- Association of multiple attribute values captured by local rules
 - avoids powerset computation
 - not aggregate in a single attribute contribution

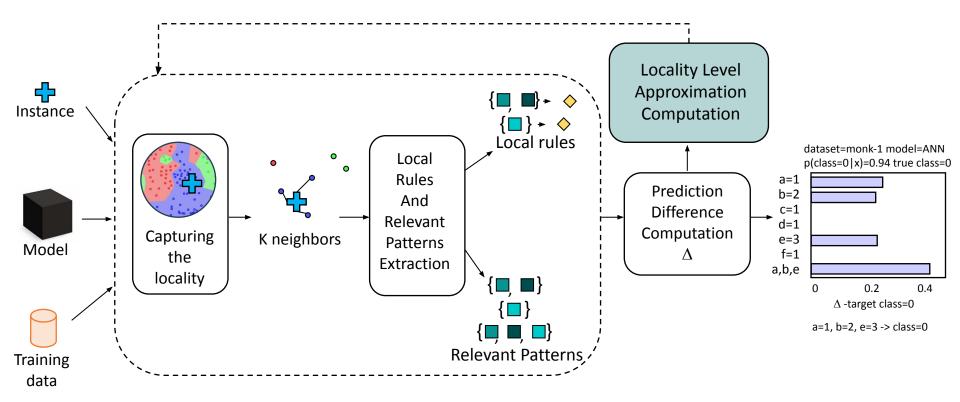
Pastor and Baralis. Explaining black box models by means of local rules, ACM SAC 2019.



LACE



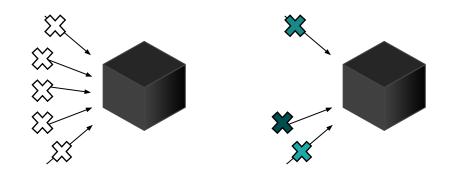
LACE



Automatic definition of the locality scope

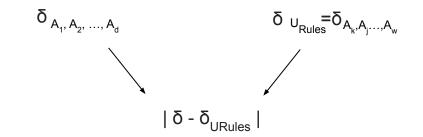
Heuristic approach for **tuning** parameter **K** to define the neighborhood

Quantitative evaluation of local rules **ability to capture prediction** locality



Experimental results

 show the ability of the automatic tuning in reducing the approximation → average 47.8%.



Explanation evaluation

 $e_M(x) \rightarrow$ prediction explanation provided by explanation method M

 $e(x) \rightarrow ground truth explanation for instance x$

Feature importance explanations^{1,2}

- **feature cosine similarly** (*f-sim*)
- **f1-score** (*f1-feature*)

Rule-based explanations^{1,2}

- **f1-score** (*f1-rule*)
- Rule-hit (r-hit)

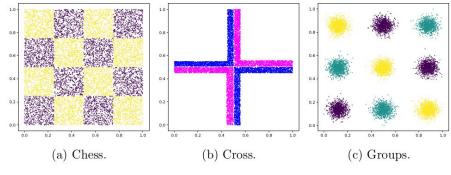
$\textbf{Problem} \rightarrow \textbf{availability of ground truth}$

Guidotti. Evaluating local explanation methods on ground truth. Artificial Intelligence 2021.
 Jia et al. Improving the quality of explanations with local embedding perturbations. KDD 2019.

Explanation evaluation

For ground truth explanations

Artificial datasets



+ Random features unrelated with the class

Real datasets

Injecting a controlled behavior in classifiers

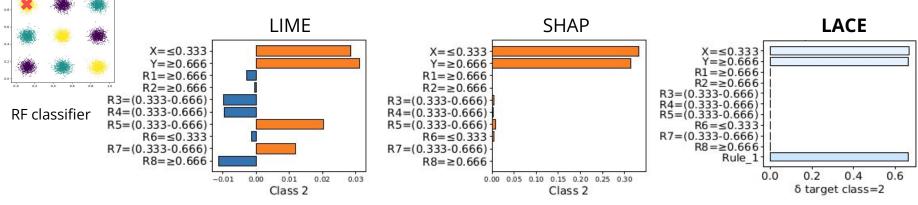
Evaluation with white-box models

Evaluation - Artificial datasets

Feature cosine similarity				
dataset	classifier	LACE	LIME	SHAP
chess_d	RF	0.99996	0.86489	0.99956
	MLP	0.99996	0.86451	0.99784
cross_d	\mathbf{RF}	0.99998	0.98791	0.99980
	MLP	0.99998	0.98793	0.99905
groups_d	RF	1.0	0.97709	0.99987
	MLP	1.0	0.97711	0.99973
groups_10_d	RF	0.98250	0.69973	0.99451
	MLP	1.0	0.72695	0.99783

Fosturo cocipo cimilarity

	Rule f1-score		
dataset	classifier	LACE	Anchor
chess_d	RF	1.0	0.85667
	MLP	1.0	0.88467
cross_d	RF	1.0	0.87733
	MLP	1.0	0.87733
groups_d	RF	1.0	0.87600
	MLP	1.0	0.87800
groups_10_d	RF	1.0	0.65959
	MLP	1.0	0.69481



Rule_1: { $X \le 0.333$, $Y \ge 0.666$ } $\rightarrow 2$

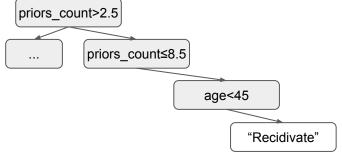
Evaluation - White-box models

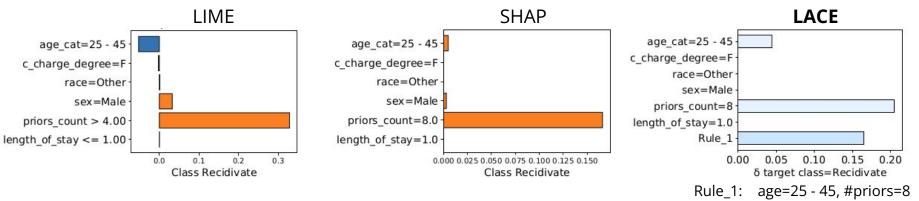
White-box model as model to explain \rightarrow Explanation of the white-box model itself as ground truth Experiments with decision tree varying the length

reature cosine similarity			
	LACE	LIME	SHAP
2	1.0	0.418	0.870
3	1.0	0.514	0.810
4	1.0	0.573	0.572
5	1.0	0.688	0.688
6	1.0	0.777	0.775

Feature cosine similarity

	Rule f1-score			
2	LACE	Anchor		
2	0.866	0.857		
3	0.872	0.812		
4	0.729	0.642		
5	0.768	0.665		
6	0.772	0.687		





X-PLAIN

Interactive tool that allows human-in-the-loop inspection of classifier reasons behind predictions

Explanation of an instance prediction

Explaining an instance prediction Explaining mispredicted predictions Comparing multiple target classes Comparing multiple classifiers

Human-in-the-loop model analysis

What if analysis on attribute values Evaluate user local rules

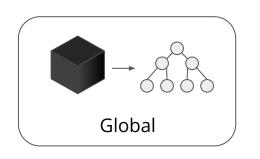
Explanation metadata

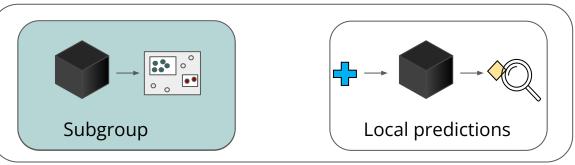
> Attribute Item view Local rule view

OVERVIEW

- On the need of explainable AI & thesis contribution
- Related work and positioning
- Understanding the behavior of models
 - From the individual perspective Local explanation to explain individual predictions
 - From the subgroup perspective Identifying and characterizing peculiar behavior of model in subgroups
- Conclusions and future work

Subgroup perspective





How the model globally works

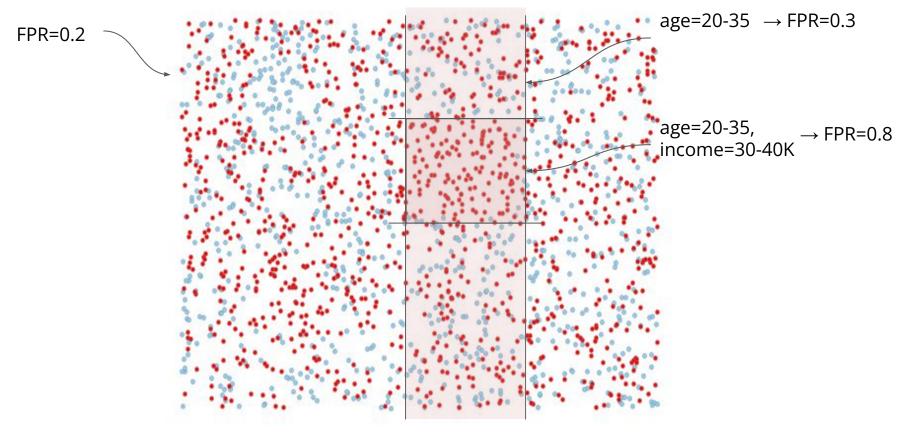
Characterization of the model behavior in **data subgroups**

Explaining the reasons behind individual predictions

Subgroups for which a *different* and *peculiar behavior* is observed

Subgroup behavior

Overall behavior vs subgroup behavior



Related work - Subgroup perspective

Supervised approaches

A priori or user-defined subgroups of interest

Classification **performance** (e.g. TFMA¹, MLCube²)

Requires human intervention, difficult task and not exhaustive identification

• Fairness

Detect and mitigate bias in classification, scoring and ranking tasks^{3,4}

Subgroup diagnosis → evaluation of different behavior on groups determined by **protected attributes**

- Known or specified
- Intersection of multiple protected attributes \rightarrow exponential enumeration Recent solutions \rightarrow e.g. **automated** tree-based partitioning over sensitive attributes⁵

[1] TensorFlow Model Analysis. Introducing TensorFlow Model Analysis: Scaleable, Sliced, and Full-Pass Metrics. 2018. [2] Kahng et al. Visual Exploration of Machine Learning Results Using Data Cube Analysis. HILDA 2016. [3] A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys 2021. [4] Zehlike et al. Fairness in Ranking: A Survey. arXiv 2021.
 [5] Elbassuoni et al. Fairness of Scoring in Online Job Marketplace. ACM Trans DS 2020.

Related work - Subgroup perspective

Unsupervised approaches

Automatic identification of interesting data subgroups

FairVIS¹ → clustering to identify subgroups
 feature-entropy to characterize and interpret clusters

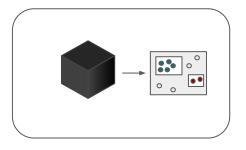
Patterns to identify data subgroups, directly interpretable on discretized data

- Slice Finder³, SliceLine⁴
 - Identifies **top K** with lower performance
 - \circ Pruning \rightarrow early stop criteria or monotonicity criteria

[1] Cabrera et al. FairVis: Visual analytics for discovering intersectional bias in machine learning. IEEE VAST 2019.

[2] Asudeh et al. Assessing and Remedying Coverage for a Given Dataset IEEE ICDE 2019. [3] Chung et al. Automated Data Slicing for Model Validation: A Big data - AI Integration Approach. IEEE TKDE 2019. [4] Sagadeeva and Boehm. SliceLine: Fast, Linear-Algebra-Based Slice Finding for ML Model Debugging. SIGMOD 2021. 26

DivExplorer



Complete exploration of all subgroups

with **adequate representation** in the dataset

Slicing via patterns → **interpretable**

Notion of **divergence** to model the peculiar behavior

Pastor, de Alfaro, Baralis. Looking for Trouble: Analyzing Classifier Behavior via Pattern Divergence. SIGMOD 2021.

Divergence of a subgroup

Subgroup characterized by pattern

I = pattern e.g. {*age=20-35, income=30-40K*}

 $\Delta(I) = f(I) - f(D)$ D = whole dataset

 $f:I \rightarrow \mathbb{R}$

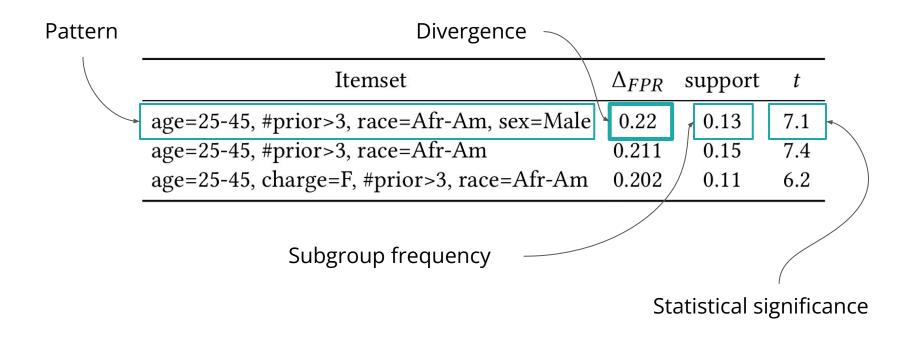
false positive and negative rates, accuracy, error rate...

MODEL AGNOSTIC

f from a generic classifier

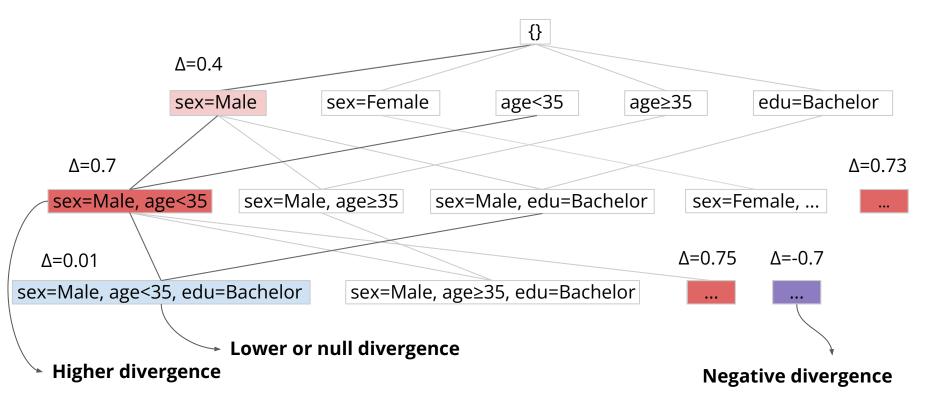
Divergent subgroups - Example

COMPAS dataset \rightarrow recidivism predictions based on defendant information



Pattern generation

DivExplorer



DivExplorer - Divergent pattern exploration

Automatic subgroup identification

SUPPORT-BASED PRUNING

We consider only itemsets above a support threshold

Avoid statistical fluctuations of $\Delta(I)$

GENERAL APPROACH

Using the notion of outcome function

EFFICIENT ALGORITHM

Effective integration into algorithms for frequent pattern mining

Outcome function

$$o: X \to \mathbb{R} \cup \{\bot\} \qquad \qquad o(x) = \begin{cases} 1 & \text{if } p(x) = \mathbf{T} \land t(x) = \mathbf{F} \\ 0 & \text{if } p(x) = \mathbf{F} \land t(x) = \mathbf{F} \\ \bot & \text{if } t(x) = \mathbf{T} \end{cases}$$

e.g. for FPR

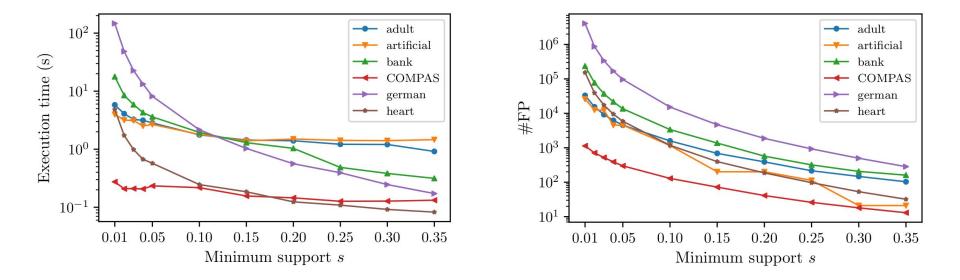
$$o(I) = E\{o(x) \mid x \models I, o(x) \neq \bot\}$$

Divergence expressed as

$$\Delta_o(I) = o(I) - o(\emptyset)$$

Efficient integration into the process pattern extraction by tallying the sum and the count of $\{o(x) \mid x \models I, o(x) \neq \bot\}$

Efficiency of DivExplorer



Why **COMPLETE EXPLORATION** of patterns with adequate representation?

Complete characterization of the model behavior

Analysis of divergence of all adequately represented patterns

Evaluation of local contribution to subgroup divergence

Evaluation of global contribution to divergence

Why **COMPLETE EXPLORATION** of patterns with adequate representation?

Complete characterization of the model behavior
 Analysis of divergence of all adequately represented patterns

Evaluation of local contribution to subgroup divergence

Evaluation of global contribution to divergence

Contributions of items to divergence

Itemset	Δ_{FPR}
age=25-45, #prior>3, race=Afr-Am, sex=Male	0.22

What is the contribution of each item?

Contributions of items to divergence

Shapley value

Given

- Team of
 - N players
- Value v(1,2,..N) of the team of N players
- Score of each subset $v(J) \forall J \subseteq I$

- \rightarrow pattern l
- \rightarrow items in I
- \rightarrow divergence $\Delta(I)$
- → If I is frequent, all subsets $J \subseteq I$ are frequent → all $\Delta(J)$ are **already available**

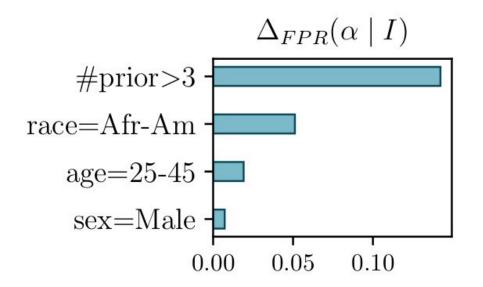
estimate the **contribution** of each player to $v(1,2,..N) \rightarrow contribution of \alpha \in I$ to $\Delta(I)$

Contribution of item α in I:

$$\Delta(\alpha \mid I) = \sum_{J \subseteq I \setminus \{\alpha\}} \frac{|J|!(|I| - |J| - 1)!}{|I|!} \left[\Delta(J \cup \alpha) - \Delta(J)\right]$$

Contributions of items to divergence

Itemset	Δ_{FPR}
age=25-45, #prior>3, race=Afr-Am, sex=Male	0.22



Why **COMPLETE EXPLORATION** of patterns with adequate representation?

Complete characterization of the model behavior
 Analysis of divergence of all adequately represented patterns

Evaluation of local contribution to subgroup divergence

• Evaluation of global contribution to divergence

Global divergence

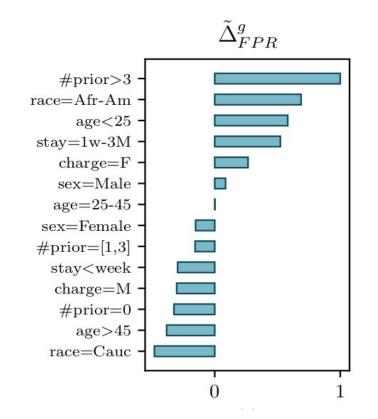
Global Shapley Value

A generalization of Shapley value that accounts for:

- Incompatible items (e.g. {*age*<25, *age*>45})
- Minimum support threshold

$$\widetilde{\Delta}^{g}(I,s) = \sum_{B \subseteq A \setminus \text{attr}(I)} \frac{|B|!(|A| - |B| - |I|)!}{|A|! \prod_{b \in B \cup \text{attr}(I)} m_{b}} \sum_{J:J \cup I \in I_{B \cup \text{attr}(I)}^{\star}} \left[\Delta(J \cup I) - \Delta(J) \right]$$
normalization factor, where m_b set of frequent itemsets with attributes BUattr(I)

Global divergence - COMPAS



User study

- We inject controlled bias in a dataset (COMPAS)
- We produce diagnostics with DivExplorer, Slice Finder, LIME
- Can users figure out where the bias is? We count:
 - Full HITS: Users find bias
 - Partial HITS: Users find some items associated with bias, but not all

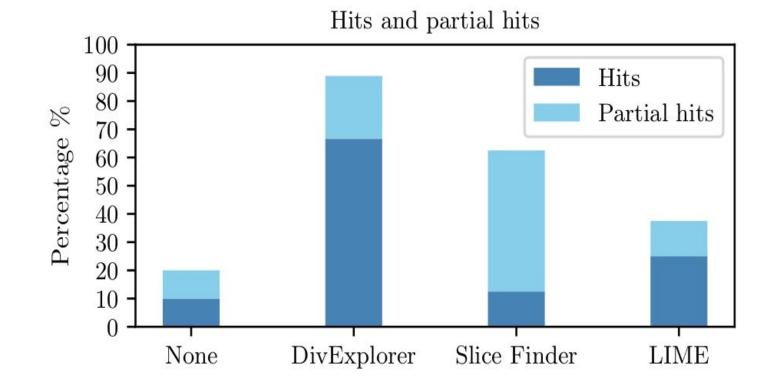
CONTROLLED EXPERIMENT

COMPARISON

USER TARGET

HIT RATE

User study



www.divexplorer.org

nts:	Prune Redundancy by	Y

0			

_		. 1		~				-					- 1				
	a		h		F -			71	C.		60	11		5	n	ſ i	
	-						-		-	-			~	÷.,			-

Support 🖨	Itemset	\$Δ_	_fpr 📤	t_fp 🖨	∆_fnr ≎	t_fn 😂	∆_error ≎	t_error 🖨	∆_acc ≎	FPR 😄	FNR 🌩
0.13	(race=Afr-Am, #prior=>3, sex=Male, age=25-45)	0.3	22	7.1	-0.228	10.1	0.058	3.2	-0.058	0.308	<mark>0.47</mark>
0.1	(charge=F, race=Afr-Am, age=25-45, #prior=>3, sex=Male)	0.3	217	6.0	-0.248	9.8	0.046	2.2	-0.046	0.306	0.45
0.06	(stay=1w-3M, #prior=>3, sex=Male)	0.3	216	4.9	-0.174	5.7	0.099	3.8	-0.099	0.305	0.525
0.15	(race=Afr-Am, #prior=>3, age=25-45)	0.3	211	7.4	-0.226	10.4	0.055	3.1	-0.055	0.299	0.472
0.07	(stay=1w-3M, #prior=>3)	0.2	207	5.1	-0.183	6.3	0.089	3.7	-0.089	0.295	0.515
Compu	ilobals Compute Globa	FPR Valu	Jes	Compute	Global FNR	Values	Compute G	ilobal Error Va	alues	<< <	1 > >>

Show Corrective Values

Q Search

🕄 Clear

C Reset

A Edit Columns

Pastor, Gavgavian, Baralis, de Alfaro. How Divergent Is Your Data? Demo Track. VLDB 2021.

Generalization of divergence

Notion of divergence \rightarrow to inspect the behavior of a generic model or instance property in subgroups

 $o: X \to \mathbb{R} \cup \{\bot\}$

Attribute

Scoring

Ranking

Continuous

o(x) = a(x)

o(x) = w(x)

i(x) ightarrow rank position $o(x) = \gamma(i(x))$

Discrete

$$o(x) = \begin{cases} 1 & a(x) = v \\ 0 & a(x) \neq v \end{cases}$$

 $\stackrel{\mathrm{Top}\,\mathrm{K}}{\gamma(i)} = \begin{cases} 1 & i \leq k \\ 0 & i > k \end{cases}$

Relation rank and benefit

$$\gamma(i) = i^{\alpha}$$

Ranking Divergence

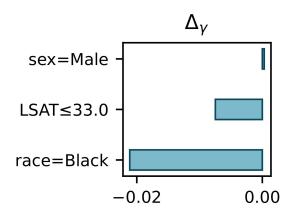
Law School dataset \rightarrow Ranking based on student normalized first-year average grade, $\gamma(i)=i^{-0.1}$

Higher	Itemset	Sup	Δ_{γ}	t
in the ranking	LSAT>41.0, UGPA>3.5, race=White, sex=Female LSAT>41.0, UGPA>3.5, race=White LSAT>41.0, UGPA>3.5, race=White, sex=Male	0.07	0.0206 0.0196 0.0189	13.0
Lower in the ranking	LSAT≤ 33.0, race=Black, sex=Male LSAT≤ 33.0, UGPA≤ 3.0, race=Black, sex=Male LSAT≤ 33.0, UGPA≤ 3.0, race=Black	0.01	-0.0283 -0.0280 -0.0278	21.0

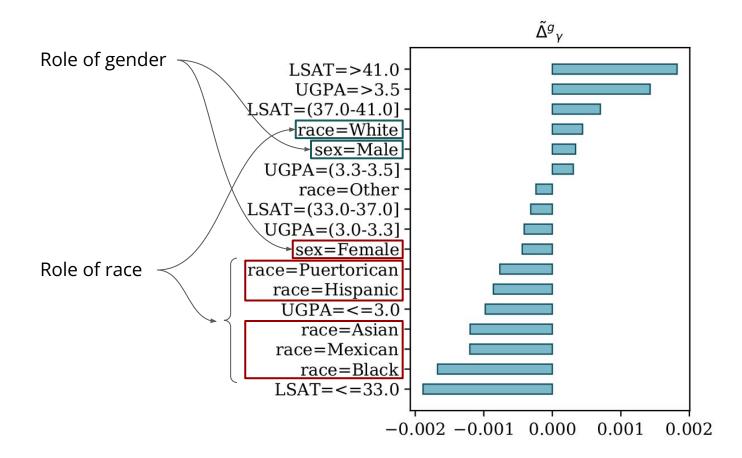
46

Ranking Divergence

Itemset	Sup	Δ_{γ}	t
LSAT≤ 33.0, race=Black, sex=Male	0.02	-0.0283	25.6
$LSAT \le 33.0$, $UGPA \le 3.0$, race=Black, sex=Male	0.01	-0.0280	21.0
LSAT \leq 33.0, UGPA \leq 3.0, race=Black	0.03	-0.0278	31.4



Ranking Divergence



Post-hoc explanation approaches to **enhance** the **interpretability** of classification models

Pattern \rightarrow Intrinsic interpretability and ability to capture associations and group data

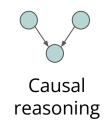
From the **individual** perspective

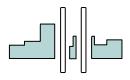
Local explanations to explain individual predictions **Qualitative** and **quantitative** understanding

From the **subgroup** perspective

Identifying and characterizing peculiar model behavior in subgroups

- Automatic identification of divergent subgroups
- Exploration of lattice of patterns and their divergence
- Contribution of items to divergence





Discretization

Unstructured data

Fairness

List of publications

- Pastor, de Alfaro, Baralis. Looking for Trouble: Analyzing Classifier Behavior via Pattern Divergence. SIGMOD 2021.
- Pastor, de Alfaro, Baralis. Identifying Biased Subgroups in Ranking and Classification. Workshop on Responsible AI@ACM KDD 2021.
- Pastor, Gavgavian, Baralis, de Alfaro. How Divergent Is Your Data? Demo Track. VLDB 2021.
- Pastor and Baralis. Bring Your Own Data to X-PLAIN. Demo Track. ACM SIGMOD 2020.
- Pastor and Baralis. Explaining black box models by means of local rules. ACM SAC 2019.
- Pastor and Baralis. Enhancing Interpretability of Black Box Models by means of Local Rules. ACM womENcourage 2019.
- Pastor. Deriving Local Internal Logic for Black Box Models. SEBD 2018.
- Giordano, Giobergia, Pastor, La Macchia, Cerquitelli, Baralis, Mellia, Tricarico. Data-Driven Strategies for Predictive Maintenance: Lesson
 Learned from an Automotive Use Case. Computers in Industry 2021 (to appear).
- Giordano, Pastor, Giobergia, Cerquitelli, Baralis, Mellia, Neri, Tricarico. Dissecting a data-driven prognostic pipeline: A powertrain use case. Expert Systems with Applications 2021.
- Apiletti and Pastor. Correlating espresso quality with coffee-machine parameters by means of association rule mining. Electronics 2020.
- Apiletti, Pastor, Callà, Baralis. Evaluating espresso coffee quality by means of time-series feature engineering. EDBT/ICDT Workshops 2020.

• Baralis, Garza, Pastor. A density-based preprocessing technique to scale out clustering. IEEE Big Data 2018.

Attanasio and Pastor. PoliTeam@ AMI: Improving Sentence Embedding Similarity with Misogyny Lexicons for Automatic Misogyny
Identification in Italian Tweets. EVALITA 2020.

Thank you for your attention